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The world of hereditary graph classes

A piece of history...

Optimization problems are NP-hard in general, but become
polynomially solvable when some configurations are excluded

A wonderful Robertson and Seymour’s graph minor theory : for
graphs closed under vertex/edge deletion and edge contraction

How about graphs closed only under vertex deletion?

Definition

A class C is hereditary if C is closed under taking induced subgraphs

G is H-free if it does not contain H (as induced subgraph)

G is F-free if it is H-free, ∀H ∈ F , for some family F

Many interesting classes of graphs can be characterized as being F-free
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The world of hereditary graph classes

CHORDAL GRAPHS

G if chordal if G contains no hole
hole : induced cycle of length ≥ 4

everything is easy

PERFECT GRAPHS

G is perfect if χ(H) = ω(H), for any H contained in G

χ : chromatic number ω : clique number

G is perfect iff G contains no odd hole & no odd antihole (SPGT)

hole : hole of odd length antihole : complement of hole

many graph problems are easy
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Perfect graphs vs even-hole-free graphs

Perfect
Chordal

Odd-Hole-Free Even-Hole-Free

no hole

no odd hole + no odd antihole

EVEN-HOLE FREE GRAPHS

appear in the study of Strong Perfect Graph Conjecture

it is structurally similar to perfect graphs

even-hole-free = no even hole + no antihole of length ≥ 6

decomposition theorem and recognition algorithm are known

but...

many graph problems are open, e.g. coloring, independent set,
computing χ, α (except computing ω is polynomial)

Remark. For more about them, a survey by Kristina Vušković.
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Even-hole-free graphs: go to a smaller world

What to do?

What to study?
What to exclude?
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What to study?

Bounding parameters? for ex. tree-width, rank-width, ...

Tree decomposition & Tree-width

Tree-width : a parameter measuring how far is a graph G from a tree

figures taken from https://commons.wikimedia.org/wiki/User:David Eppstein/Gallery

The width T is the size of the largest bag minus 1
The tree-width of G is the width of the best tree decomposition

small tree-width is good → many graph problems are easy
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What to exclude?

Excluding diamond → (even hole, diamond)-free graphs

diamond

Theorem ([Adler, et al., 2017])

There exists a family of (even hole, triangle)-free graphs with arbitrarily
large rank-width (a graph parameter similar to tree-width)

Excluding triangle → (even hole, triangle)-free graphs
v1

v3v2

triangle

Theorem ([Cameron, et al., 2018])

Every (even hole, triangle)-free graph has tree-width at most 5
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A question...

Is the tree-width (or rank-width) of even-hole-free graphs bounded by
a function of its clique number ω?
(asked by Cameron, Chaplick, Hoàng, 2015)

Theorem ([Cameron, et al., 2018])

Every (even hole, triangle)-free graph has tree-width at most 5

But... how about excluding K4?

No /
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PART 1

Layered wheel

9



Truemper configurations

The following graphs are called Truemper configurations

Theta :
vu

Wheel :

Pyramid :

Prism :

Even-hole-free ⇒ contain no theta + no prism + no even wheel

Odd-hole-free ⇒ contain no pyramid + no odd wheel

Many studies about excluding Truemper configuration (see a survey
by Kristina Vušković for more about them).
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The class of (Theta, triangle)-free graphs

theta triangle

This class is ”close” to the class of even-hole-free graphs

Theta-Free

EHF

EHF, K4-Free
TTF

EHF, 4-Free

tw ≤ 5
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TTF graphs vs EHF graphs with no K4

There are similarities in the structure of wheels

H

v
u

wheel 2-wheel

Structure of 2-wheels with non-adjacent centers:

In (even hole, triangle)-free : always nested

In (theta, triangle)-free : nested, except the cube

In (even hole, K4)-free : nested, with several exceptions

x Hy

nested wheel

u

Hv

cube

x y H x y H Hx y

several exceptions
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TTF layered wheel G`,k , ` ≥ 1, k ≥ 4

(Theta, Triangle)-Free Layered Wheel

Layer0

Layer2

Layer1

Figure: TTF layered wheel G2,4
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TTF layered wheel construction

root L0

G (`, k), with ` = 2 and k = 4
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TTF layered wheel construction

root L0

L1

G (`, k), with ` = 2 and k = 4
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TTF layered wheel construction

type 1 vertextype 0 vertex

L0

L1

G (`, k), with ` = 2 and k = 4
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TTF layered wheel construction

type 1

L2

L0

L1

G (`, k), with ` = 2 and k = 4
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TTF layered wheel construction

L2

L0

L1

G (`, k), with ` = 2 and k = 4
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EHF layered wheel

Remark

EHF layered wheel contains triangle.

The first two layers are similar as for TTF layered wheel
Three types of vertices in G`,k :

uu′

Eu′,u Ou Eu,u′′

u′′
Pi

Pi+1

type 0

uu′ u′′
Pi

Pi+1

Pj

Eu′,u Eu,u′′Ou OuOu,v

v

type 1

Eu′,u Eu,u′′Ou Ou,v Ow Ou,w Ov Ov,w

u′ u u′′

v

w

Pi+1

Pi

Pj

Pj′

type 2
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Properties of layered wheels

the shortest hole can be of arbitrarily length (at least 4)

the tree-width can be arbitrarily large

contract every layer into a vertex

` + 1 layers

even the rank-width can be arbitrarily large
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PART 2

Bounding the tree-width
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Bounding the tree-width

Remark

To reach tree-width `, layered wheel needs much more than 2` vertices.

Could it be that the tree-width is ”small” in some sense?

Lemma (S., Trotignon, 2019+)

The tree-width of layered wheel on n vertices is in O(log n).
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A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex (theta,
triangle)-free graph is in O(log n).

Conjecture

There exists a constant c such that the tree-width of any n-vertex (even
hole, K4)-free graph is in O(log n).

If the conjecture is true, then many graph problems are poly-time
solvable (it is indeed in O(2tw )).

19



A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex (theta,
triangle)-free graph is in O(log n).

Conjecture

There exists a constant c such that the tree-width of any n-vertex (even
hole, K4)-free graph is in O(log n).

If the conjecture is true, then many graph problems are poly-time
solvable (it is indeed in O(2tw )).

19



A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex (theta,
triangle)-free graph is in O(log n).

Conjecture

There exists a constant c such that the tree-width of any n-vertex (even
hole, K4)-free graph is in O(log n).

If the conjecture is true, then many graph problems are poly-time
solvable (it is indeed in O(2tw )).

19



An attempt toward the conjectures

Partial result

H

u1

u2

uk−1

uk

span wheel of order k

Span-Wheel-Number ζ(G ) :

the order of the largest span wheel
in G

Theorem (S., Trotignon, 2019+)

The tree-width of any (theta, triangle)-free graph is in O
(
ζ(G )o(1)

)
idem for (even hole, K4, pyramid)-free graph

pyramid

but... ζ(G ) can be up to n
2 − 1 /
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A consequence

An m-Spider, m ≥ 1 is a graph
consists of three internally-vertex-
disjoint chordless paths P1, P2, P3,
each of length m

x

y1

y2

y3

P1

P2

P3

Theorem (S., Trotignon, 2019+)

Let m ≥ 1. There exists a constant c such that any (theta, triangle,
m-spider)-free graph G has tree-width O

(
mo(1)

)
.

Any span-wheel in G of ≥ b3m
2 c centers contains an m-spider.

The theorem is best possible in some sense

It was conjectured that: α is poly-time computable for spider-free
graphs, also for theta-free graphs
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Open Problem

22



A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex
(theta, triangle)-free graph is in O(log n).

idem for (even hole, K4)-free graphs
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Another conjecture

Remark

EHF layered wheel contains none of the following:

v2v3

v3

v1

diamond pyramid

Conjecture

There exists a constant c such that the tree-width of any (even hole,
K4, diamond)-free graphs is at most c.

idem for (even hole, K4, pyramid)-free graphs
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One more conjecture

Remark

Layered wheel contains none of the following:

large clique

large bi-clique (Ks,t) (even as a non-induced subgraph)

large grid or line graph of a grid, or its subdivision

large wall or line graph of a wall, or its subdivision

Figure: A grid, a wall, a subdivision of the former and its line graphs
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One more conjecture

The grid-minor theorem:

If G has huge tree-width then G must contain a large grid as a minor.

Conjecture

If G has huge tree-width, then G must contain as an induced subgraph:

a big clique

a big complete bipartite graph

a big grid, possibly subdivided

a big wall, possibly subdivided

a big line graph of a subdivided wall

layered wheels or variation of them

— The End —
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