Problems around even-hole-free graphs

Dewi Sintiari
CNRS, LIP, ENS Lyon
based on joint work with Nicolas Trotignon

November 17, 2020

The world of hereditary graph classes

A piece of history...

- Optimization problems are NP-hard in general, but become polynomially solvable when some configurations are excluded
- A wonderful Robertson and Seymour's graph minor theory : for graphs closed under vertex/edge deletion and edge contraction
- How about graphs closed only under vertex deletion?

The world of hereditary graph classes

A piece of history...

- Optimization problems are NP-hard in general, but become polynomially solvable when some configurations are excluded
- A wonderful Robertson and Seymour's graph minor theory : for graphs closed under vertex/edge deletion and edge contraction
- How about graphs closed only under vertex deletion?

Definition

A class \mathcal{C} is hereditary if \mathcal{C} is closed under taking induced subgraphs

The world of hereditary graph classes

A piece of history...

- Optimization problems are NP-hard in general, but become polynomially solvable when some configurations are excluded
- A wonderful Robertson and Seymour's graph minor theory : for graphs closed under vertex/edge deletion and edge contraction
- How about graphs closed only under vertex deletion?

Definition

A class \mathcal{C} is hereditary if \mathcal{C} is closed under taking induced subgraphs

- G is H-free if it does not contain H (as induced subgraph)
- G is \mathcal{F}-free if it is H-free, $\forall H \in \mathcal{F}$, for some family \mathcal{F}

The world of hereditary graph classes

A piece of history...

- Optimization problems are NP-hard in general, but become polynomially solvable when some configurations are excluded
- A wonderful Robertson and Seymour's graph minor theory : for graphs closed under vertex/edge deletion and edge contraction
- How about graphs closed only under vertex deletion?

Definition

A class \mathcal{C} is hereditary if \mathcal{C} is closed under taking induced subgraphs

- G is H-free if it does not contain H (as induced subgraph)
- G is \mathcal{F}-free if it is H-free, $\forall H \in \mathcal{F}$, for some family \mathcal{F}

Many interesting classes of graphs can be characterized as being \mathcal{F}-free

The world of hereditary graph classes

CHORDAL GRAPHS

- G if chordal if G contains no hole
- hole : induced cycle of length ≥ 4
- everything is easy

The world of hereditary graph classes

CHORDAL GRAPHS

- G if chordal if G contains no hole
- hole : induced cycle of length ≥ 4
- everything is easy

PERFECT GRAPHS

- G is perfect if $\chi(H)=\omega(H)$, for any H contained in G
- χ : chromatic number ω : clique number

The world of hereditary graph classes

CHORDAL GRAPHS

- G if chordal if G contains no hole
- hole: induced cycle of length ≥ 4
- everything is easy

PERFECT GRAPHS

- G is perfect if $\chi(H)=\omega(H)$, for any H contained in G
- χ : chromatic number
ω : clique number
- G is perfect iff G contains no odd hole \& no odd antihole (SPGT)
- hole : hole of odd length antihole : complement of hole

The world of hereditary graph classes

CHORDAL GRAPHS

- G if chordal if G contains no hole
- hole: induced cycle of length ≥ 4
- everything is easy

PERFECT GRAPHS

- G is perfect if $\chi(H)=\omega(H)$, for any H contained in G
- χ : chromatic number
ω : clique number
- G is perfect iff G contains no odd hole \& no odd antihole (SPGT)
- hole : hole of odd length antihole : complement of hole
- many graph problems are easy

Perfect graphs vs even-hole-free graphs

Perfect graphs vs even-hole-free graphs

EVEN-HOLE FREE GRAPHS

- appear in the study of Strong Perfect Graph Conjecture
- it is structurally similar to perfect graphs
- even-hole-free $=$ no even hole + no antihole of length ≥ 6
- decomposition theorem and recognition algorithm are known

Perfect graphs vs even-hole-free graphs

EVEN-HOLE FREE GRAPHS

- appear in the study of Strong Perfect Graph Conjecture
- it is structurally similar to perfect graphs
- even-hole-free $=$ no even hole + no antihole of length ≥ 6
- decomposition theorem and recognition algorithm are known but...
- many graph problems are open, e.g. coloring, independent set, computing χ, α (except computing ω is polynomial)

Perfect graphs vs even-hole-free graphs

EVEN-HOLE FREE GRAPHS

- appear in the study of Strong Perfect Graph Conjecture
- it is structurally similar to perfect graphs
- even-hole-free $=$ no even hole + no antihole of length ≥ 6
- decomposition theorem and recognition algorithm are known but...
- many graph problems are open, e.g. coloring, independent set, computing χ, α (except computing ω is polynomial)

Remark. For more about them, a survey by Kristina Vušković.

Even-hole-free graphs: go to a smaller world

- What to do?
- What to study?
- What to exclude?

What to study?

Bounding parameters? for ex. tree-width, rank-width, ...

What to study?

Bounding parameters? for ex. tree-width, rank-width, ...
Tree decomposition \& Tree-width

- Tree-width : a parameter measuring how far is a graph G from a tree

figures taken from https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery
- The width \mathcal{T} is the size of the largest bag minus 1
- The tree-width of G is the width of the best tree decomposition

What to study?

Bounding parameters? for ex. tree-width, rank-width, ...
Tree decomposition \& Tree-width

- Tree-width : a parameter measuring how far is a graph G from a tree

figures taken from https://commons.wikimedia.org/wiki/User:David_Eppstein/Gallery
- The width \mathcal{T} is the size of the largest bag minus 1
- The tree-width of G is the width of the best tree decomposition
- small tree-width is good \rightarrow many graph problems are easy

What to exclude?

- Excluding diamond \rightarrow (even hole, diamond)-free graphs

Theorem ([Adler, et al., 2017])

There exists a family of (even hole, triangle)-free graphs with arbitrarily large rank-width (a graph parameter similar to tree-width)

What to exclude?

- Excluding diamond \rightarrow (even hole, diamond)-free graphs

Theorem ([Adler, et al., 2017])

There exists a family of (even hole, triangle)-free graphs with arbitrarily large rank-width (a graph parameter similar to tree-width)

- Excluding triangle \rightarrow (even hole, triangle)-free graphs

Theorem ([Cameron, et al., 2018])

Every (even hole, triangle)-free graph has tree-width at most 5

A question...

- Is the tree-width (or rank-width) of even-hole-free graphs bounded by a function of its clique number ω ? (asked by Cameron, Chaplick, Hoàng, 2015)

A question...

- Is the tree-width (or rank-width) of even-hole-free graphs bounded by a function of its clique number ω ? (asked by Cameron, Chaplick, Hoàng, 2015)

Theorem ([Cameron, et al., 2018])
Every (even hole, triangle)-free graph has tree-width at most 5

A question...

- Is the tree-width (or rank-width) of even-hole-free graphs bounded by a function of its clique number ω ? (asked by Cameron, Chaplick, Hoàng, 2015)

Theorem ([Cameron, et al., 2018])

Every (even hole, triangle)-free graph has tree-width at most 5

- But... how about excluding K_{4} ?

A question...

- Is the tree-width (or rank-width) of even-hole-free graphs bounded by a function of its clique number ω ? (asked by Cameron, Chaplick, Hoàng, 2015)

Theorem ([Cameron, et al., 2018])

Every (even hole, triangle)-free graph has tree-width at most 5

- But... how about excluding K_{4} ?

- No ${ }^{-3}$

PART 1

Layered wheel

Truemper configurations

The following graphs are called Truemper configurations

- Theta :

- Wheel :

- Pyramid :

- Prism

Truemper configurations

The following graphs are called Truemper configurations

- Theta :

- Wheel :

- Pyramid :

- Prism

- Even-hole-free \Rightarrow contain no theta + no prism + no even wheel
- Odd-hole-free \Rightarrow contain no pyramid + no odd wheel

Truemper configurations

The following graphs are called Truemper configurations

- Theta :

- Wheel :

- Pyramid :

- Prism :

- Even-hole-free \Rightarrow contain no theta + no prism + no even wheel
- Odd-hole-free \Rightarrow contain no pyramid + no odd wheel
- Many studies about excluding Truemper configuration (see a survey by Kristina Vušković for more about them).

The class of (Theta, triangle)-free graphs

theta

triangle

The class of (Theta, triangle)-free graphs

theta

triangle

This class is "close" to the class of even-hole-free graphs

TTF graphs vs EHF graphs with no K_{4}

There are similarities in the structure of wheels

wheel

TTF graphs vs EHF graphs with no K_{4}

There are similarities in the structure of wheels

wheel

2-wheel

Structure of 2-wheels with non-adjacent centers:

- In (even hole, triangle)-free : always nested
- In (theta, triangle)-free : nested, except the cube
- In (even hole, K_{4})-free : nested, with several exceptions

several exceptions

TTF layered wheel $G_{\ell, k}, \ell \geq 1, k \geq 4$

(Theta, Triangle)-Free Layered Wheel

Figure: TTF layered wheel $G_{2,4}$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$$
G(\ell, k), \text { with } \ell=2 \text { and } k=4
$$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

TTF layered wheel construction

$G(\ell, k)$, with $\ell=2$ and $k=4$

EHF layered wheel

Remark

EHF layered wheel contains triangle.

EHF layered wheel

Remark

EHF layered wheel contains triangle.

- The first two layers are similar as for TTF layered wheel
- Three types of vertices in $G_{\ell, k}$:

Properties of layered wheels

- the shortest hole can be of arbitrarily length (at least 4)
- the tree-width can be arbitrarily large

- even the rank-width can be arbitrarily large

PART 2

Bounding the tree-width

Bounding the tree-width

Remark

To reach tree-width ℓ, layered wheel needs much more than 2^{ℓ} vertices.

Bounding the tree-width

Remark

To reach tree-width ℓ, layered wheel needs much more than 2^{ℓ} vertices.

- Could it be that the tree-width is "small" in some sense?

Bounding the tree-width

Remark

To reach tree-width ℓ, layered wheel needs much more than 2^{ℓ} vertices.

- Could it be that the tree-width is "small" in some sense?

Lemma (S., Trotignon, 2019+)

The tree-width of layered wheel on n vertices is in $O(\log n)$.

A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex (theta, triangle)-free graph is in $O(\log n)$.

A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex (theta, triangle)-free graph is in $O(\log n)$.

Conjecture

There exists a constant c such that the tree-width of any n-vertex (even hole, $\left.K_{4}\right)$-free graph is in $O(\log n)$.

A conjecture

Conjecture

There exists a constant c such that the tree-width of any n-vertex (theta, triangle)-free graph is in $O(\log n)$.

Conjecture

There exists a constant c such that the tree-width of any n-vertex (even hole, $\left.K_{4}\right)$-free graph is in $O(\log n)$.

- If the conjecture is true, then many graph problems are poly-time solvable (it is indeed in $O\left(2^{t w}\right)$).

An attempt toward the conjectures

Partial result

Span-Wheel-Number $\zeta(G)$: the order of the largest span wheel in G
span wheel of order k

An attempt toward the conjectures

Partial result

$$
\text { Span-Wheel-Number } \zeta(G) \text { : }
$$ the order of the largest span wheel in G

span wheel of order k

Theorem (S., Trotignon, 2019+)

- The tree-width of any (theta, triangle)-free graph is in $O\left(\zeta(G)^{o(1)}\right)$
- idem for (even hole, K_{4}, pyramid)-free graph

pyramid

An attempt toward the conjectures

Partial result

Span-Wheel-Number $\zeta(G)$: the order of the largest span wheel in G
span wheel of order k

Theorem (S., Trotignon, 2019+)

- The tree-width of any (theta, triangle)-free graph is in $O\left(\zeta(G)^{o(1)}\right)$
- idem for (even hole, K_{4}, pyramid)-free graph

$$
\text { but... } \zeta(G) \text { can be up to } \frac{n}{2}-1 \oplus
$$

A consequence

An m-Spider, $m \geq 1$ is a graph consists of three internally-vertexdisjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

A consequence

An m-Spider, $m \geq 1$ is a graph consists of three internally-vertexdisjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

Theorem (S., Trotignon, 2019+)

Let $m \geq 1$. There exists a constant c such that any (theta, triangle, m-spider)-free graph G has tree-width $O\left(m^{\circ(1)}\right)$.

- Any span-wheel in G of $\geq\left\lfloor\frac{3 m}{2}\right\rfloor$ centers contains an m-spider.

A consequence

An m-SPIDER, $m \geq 1$ is a graph consists of three internally-vertexdisjoint chordless paths P_{1}, P_{2}, P_{3}, each of length m

Theorem (S., Trotignon, 2019+)

Let $m \geq 1$. There exists a constant c such that any (theta, triangle, m-spider)-free graph G has tree-width $O\left(m^{\circ(1)}\right)$.

- Any span-wheel in G of $\geq\left\lfloor\frac{3 m}{2}\right\rfloor$ centers contains an m-spider.
- The theorem is best possible in some sense
- It was conjectured that: α is poly-time computable for spider-free graphs, also for theta-free graphs

Open Problem

A conjecture

Conjecture

- There exists a constant c such that the tree-width of any n-vertex (theta, triangle)-free graph is in $O(\log n)$.
- idem for (even hole, K_{4})-free graphs

Another conjecture

Remark

EHF layered wheel contains none of the following:

diamond

pyramid

Another conjecture

Remark

EHF layered wheel contains none of the following:

diamond

pyramid

Conjecture

- There exists a constant c such that the tree-width of any (even hole, K_{4}, diamond)-free graphs is at most c.

Another conjecture

Remark

EHF layered wheel contains none of the following:

pyramid

Conjecture

- There exists a constant c such that the tree-width of any (even hole, K_{4}, diamond)-free graphs is at most c.
- idem for (even hole, K_{4}, pyramid)-free graphs

One more conjecture

Remark

Layered wheel contains none of the following:

- large clique
- large bi-clique $\left(K_{s, t}\right)$ (even as a non-induced subgraph)
- large grid or line graph of a grid, or its subdivision
- large wall or line graph of a wall, or its subdivision

Figure: A grid, a wall, a subdivision of the former and its line graphs

One more conjecture

The grid-minor theorem:

- If G has huge tree-width then G must contain a large grid as a minor.

One more conjecture

The grid-minor theorem:

- If G has huge tree-width then G must contain a large grid as a minor.

Conjecture

If G has huge tree-width, then G must contain as an induced subgraph:

- a big clique
- a big complete bipartite graph
- a big grid, possibly subdivided
- a big wall, possibly subdivided
- a big line graph of a subdivided wall
- layered wheels or variation of them

One more conjecture

The grid-minor theorem:

- If G has huge tree-width then G must contain a large grid as a minor.

Conjecture

If G has huge tree-width, then G must contain as an induced subgraph:

- a big clique
- a big complete bipartite graph
- a big grid, possibly subdivided
- a big wall, possibly subdivided
- a big line graph of a subdivided wall
- layered wheels or variation of them

- The End -

References

R. Adler, N.K. Le, H. Müller, M. Radovanović, N. Trotignon, and K. Vušković (2017).

On rank-width of even-hole-free graphs.
Discrete Mathematics \& Theoretical Computer Science, 19(1), 2017.

- K. Cameron, M.V.G. da Silva, S. Huang, and K. Vušković (2018)

Structure and algorithms for (cap, even hole)-free graphs
Discrete Mathematics 341(2):463473.
國 K. Vušković.
Even-hole-free graphs: a survey.
Applicable Analysis and Discrete Mathematics, 10(2):219-240, 2010.
K. Vušković.

The world of hereditary graph classes viewed through Truemper configurations.
In S. Gerke S.R. Blackburn and M. Wildon, editors, Surveys in Combinatorics, London Mathematical Society Lecture Note Series, volume 409, pages 265-325. Cambridge University Press, 2013.

